"Everything I'm gonna present to you was not in my textbooks when I went to school. And most of it was not even in my college textbooks. I'm a geophysicist and (all my earth science books) when I was a student I had to give the wrong answer to get an A." -- Robert D. Ballard, geophysicist, May 2008
Science Daily: New Wrinkle In Ancient Ocean Chemistry.
Two questions that remain unresolved in studies of the early Earth are when oxygen production via photosynthesis got started and when it began to alter the chemistry of Earth's ocean and atmosphere.
Now a research team led by geoscientists at the University of California, Riverside corroborates recent evidence that oxygen production began in Earth's oceans at least 100 million years before the GOE, and goes a step further in demonstrating that even very low concentrations of oxygen can have profound effects on ocean chemistry.
To arrive at their results, the researchers analyzed 2.5 billion-year-old black shales from Western Australia. Essentially representing fossilized pieces of the ancient seafloor, the fine layers within the rocks allowed the researchers to page through ocean chemistry's evolving history.
Specifically, the shales revealed that episodes of hydrogen sulfide accumulation in the oxygen-free deep ocean occurred nearly 100 million years before the GOE and up to 700 million years earlier than such conditions were predicted by past models for the early ocean. Scientists have long believed that the early ocean, for more than half of Earth's 4.6 billion-year history, was characterized instead by high amounts of dissolved iron under conditions of essentially no oxygen.
"The conventional wisdom [or lack thereof] has been that appreciable atmospheric oxygen is needed for sulfidic conditions to develop in the ocean," said Chris Reinhard, a Ph.D. graduate student in the Department of Earth Sciences and one of the research team members. "We found, however, that sulfidic conditions in the ocean are possible even when there is very little oxygen around, below about 1/100,000th of the oxygen in the modern atmosphere."
Reinhard explained that at even very low oxygen levels in the atmosphere, the mineral pyrite can weather on the continents, resulting in the delivery of sulfate to the ocean by rivers. Sulfate is the key ingredient in hydrogen sulfide formation in the ocean.
Timothy Lyons, a professor of biogeochemistry, whose laboratory led the research, explained that the hydrogen sulfide in the ocean is a fingerprint of photosynthetic production of oxygen 2.5 billion years ago.
"A pre-GOE emergence for oxygenic photosynthesis is a matter of intense debate, and its resolution lies at the heart of understanding the evolution of diverse forms of life," he said. "We have found an important piece of that puzzle."
Study results appear in the Oct. 30 issue of Science.
"Our data point to oxygen-producing photosynthesis long before concentrations of oxygen in the atmosphere were even a tiny fraction of what they are today, suggesting that oxygen-consuming chemical reactions were offsetting much of the production," said Reinhard, the lead author of the research paper.
1 comment:
Well.....that's quite interesting! That's why I find Geology, Physics, Biology, and Paleontology Fascinating! :) I mean.....it's discovery's like these that keep one's interest and prevents science from becoming too bland.
Post a Comment